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Abstract. The asymptotic behaviour of all the moments of a class of symmetric one- 
dimensional random flights, at the first few orders, are calculated. Different symmetric 
random flights are considered and it is shown that they simply differ up to a scaling in the 
number of jumps and that important statistical quantities are universal. 

1. Introduction 

It is well known that the random-walk model has relevant applications in many different 
fields. In particular, it is widely used for the study of transport (Bardeen and Herring 
1952) and trapping processes (Rosenstock 1969, Montroll 1969) and well describes 
the behaviour of polymers and macromolecules (Yamakawa 1971, Flory 1969). It has 
also been applied to the analysis of micro-organism motion and, more generally, to 
fluctuation phenomena (Alt 1980, Levitt 1974). Some recent reviews (Weiss and Rubin 
1983, Montroll and West 1979, Kher and Binder 1986) give wide outlooks on the 
matter and on the physical applications, and an accurate bibliography. 

Several aspects of the problem are studied according to the processes one is 
interested in, but the span distribution and its moments are of general interest both 
from a mathematical point of view and for their physical relevance. 

Different authors have derived, by using a Tauberian theorem (Hardy 1949), 
asymptotic expressions for the first two moments of the span distribution in the case 
of the standard one-dimensional random walk (Dvoretzky and Erdos 1951, Montroll 
1964, Montroll and Weiss 1965). 

An interesting generalisation of the random walk is the so-called random flight, in 
which the walker moves by jumping to any site with assigned probability. Blumen 
and Zumofen (1983) have investigated the incoherent energy transfer in ordered and 
disordered crystals by using a random flight model in which the jump probability 
distribution behaves as r-' for multipolar interactions and as exp( - y r )  for exchange 
interactions (Forster 1949, Dexter 1953). The random flight has been related to other 
problems in statistical mechanics by Cummings and Stell (1983); they showed that the 
Omstein-Zernike integral equations relative to the liquid and lattice-gas structure, to 
the percolation theory and to the random-flight problem are quite similar, so that many 
results in one of these areas can be extended to the others. The one-dimensional 
random flight applies, in particular, to the conductivity in linear and self-avoiding 
polymers (Chowdhury and Chakrabarti 1985). In this case, in fact, the charge can 
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move not only to the nearest neighbour but also to a molecule which is occasionally 
close, the probability for this to happen being fixed only by the topology of the whole 
system. 

The span distribution for a one-dimensional symmetric random flight was first given 
by Weiss and Rubin (1980). These authors, in 1976, derived the expressions for the 
first two moments of the spans in the case in which both the second and the fourth 
moments of the jump distribution exist. In the same paper they give the asymptotic 
behaviour of the span distribution when the second moment of the jump distribution 
is infinite. 

In this paper we consider, in § 4, the case of a regular jump distribution. We derive 
the expressions for all the moments of the span distribution not only at the lowest but 
also at the next orders in the number N of steps. As mentioned above, the cases of 
the two first moments at the lowest order were already known. When the span moments 
are considered, the second-order corrections are O(N-’”), and not O(N-’ ) .  It is 
interesting to notice that, in the case of standard random walk, the second-order 
corrections to the moments of the distribution of distinct sites visited are only O( N-’). 
In 0 5 the case of a jump distribution of the form p (  j )  = l ( a ) - l j - a ,  (Y > 1,  is considered. 
We give the expressions for the span moments of any real power, to the first two orders 
in N, which are competitive for (Y close to 3. 

We claim, however, that these results, although original, are not as relevant as the 
ones contained in § 6, where a general statement is given which relates the moments 
of the span distribution to the jump ones. Finally, the existence of universal (indepen- 
dent of p (  j ) )  relations among the span moments is proved. 

2. Definitions 

In this paper we consider a one-dimensional symmetric random motion in which the 
steps of the walk have lengthj with probability p (  j )  ( j  3 1). This motion is characterised 
by the structure function 

~ ( 4 )  = C p ( j )  cosj6 
j =  1 

and by the moments of the steps (or jumps) 

Weiss and Rubin (1980) have derived the exact expression for the probability 
D(I, N )  that, in a walk of N steps, the length 1 has been spanned 

D(1, N ) = d ( 1 + 2 ,  N)-2d(1+1,  N)+d(Z, N ) ,  (3) 

f(Z, N ) = T  1 11/41 C (A((“Tk))’(cot2 ~ j + ( - l ) ’  k tan2 
k = l  

In the following, the expression in the last set of brackets will be always approximated 
by (21/ rrk)2 - A ,  as the main contribution to f( 1, N )  comes from those values of k which 
are much smaller than 1 and the fluctuations in N are asymptotically irrelevant. 



Universality of symmetric I D  random frights 1405 

0 . 9  

0.8 

0.7 

0.6 - 
N . 
N 
-i  0 5 -  

t 0 . 4 -  
Y 
v 

7 
1 

Q 
:- h 0.3- 
N 
Y v 

5 0 . 2 -  

0.1 

3. The random flight distribution when the probability of large steps is exponentially 
decreasing 

- 

- 

- 

- 

- 

In this section we suppose that all the moments ( j ” )  are finite, as is the case when 
p (  j )  is exponentially decreasing for large j .  The structure function is then analytical 
and, as we are interested in small values of k, we can restrict the expansion of h ( 4 )  
to fourth order in 4. With these approximations, f(1, N )  takes the form 

We now make use of the following exact consequence of the Poisson summation 
formula: 

exp(-h2x) .rr2 X c 
h = l  h2 (7) 

and of the relations one obtains from (7) by derivation with respect to x. When these 
identities are used in ( 6 )  and only the most significant terms are maintained (the 
expression in square brackets in ( 6 )  is set to l) ,  the random flight distribution comes 
out to be well described by 

The probability that, after N steps, a length 1 has been spanned is then, a factor 
( N ( j 2 ) ) 1 ’ 2  apart, a function of I / (  N (  j ’ ) ) ,  which is shown in figure 1. 

1 I 

0 1 2 3 
1 l i  N (, 2 ) )  

Figure 1. Asymptotic behaviour of the span distribution for very large 1 and N ( / / N ’ 1 2  
being finite) and for a regular jump distribution. 



1406 B Preziosi, V Coscia and V Ferone 

If, in (8), we put y = exp(-I2/(2N( j2))) ,  it is easily seen that the distribution has 
its maximum for the value (ZO) which satisfies the equation 

), Y < l  ( 1 -26y3+36y8-46y’5+. . * 
1 -24y3+34y8-44y15+. . . 

y = y  1- ( 9 )  

This value is easily evaluated by iteration of (8) starting from the initial value 
. After two iterations it turns out that the maximum of the random motion = 2-4/3 

distribution is at 
I = 1.345 773 458 . . . (N( j2))1/2. 

We conclude this section by noting that, if all the moments of the distribution p (  j) 
of the steps are finite, the distribution of the spans is asymptotically dependent only 
on ( j2). This fact will have significant consequences. The comparison with the classical 
random walk is straightforward when one remembers that, in this case, all the moments 
( j ” )  are equal to 1. 

4. Span distribution moments when the probability of large steps is exponentially 
decreasing 

It turns out to be convenient to derive the expressions for the moments of the spans 
( I ” ’ )  from the moments ( ( I  + I)”}. For these moments we have 

( ( I + l ) @ ) =  f ( I+l )D(I ,  N )  
I = l  

( M + l ) ” d ( M + 2 ,  N ) - ( M + 2 ) w d ( M + 1 ,  N) 

M t l  p / 2  

+ 2  I = l  ” = I  ( [ ) l ” - 2 ” d ( I ,  v N ) ] .  

The evaluation of the last term of (10) is now carried out through a systematic use, 
in (6), of the identity (7) and of its derivatives. These calculations give us first of all 
that the asymptotic behaviour of d ( l ,  N )  for large I (Ib N )  is 

8 N (  j 2 )  2 1 d(I ,  N )  = I - (7) ’ I2  - ( ) 1 +- (3( j2}2 - ( j4))). 
9 r N (  j2) 4(”12) 

Moreover, the double sums over 1 and h are calculated through the relation 
M 2 C I” exp(-h212x) 

I = 1  h = l  

( I  being the Riemann zeta function), which is derived from the identity 

dl  I” exp(-h212x) 

J + l / 2  

= 1’ exp(-h212x)+ C 1 dl ( I ”  exp(-h212x)-jp exp(-h212x)), (13) 
I = l  j = 1  j - l / 2  

where the last integral on the RHS is evaluated using the mean value theorem to the 
lowest significant order. 
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We obtain finally the following expressions for the moments 

( ( I  + 1)2)N = 4 In 2 N (  j 2 ) + j  In 2 + &  

(actually the correction has been obtained by numerical calculations), 

where p 3 4 and 

C ( p ) = & p ( p  -2)A(p) .  (14g) 

In (14f) the term (2p’-4- 1)l(p -3) must be substituted by In 2 if p = 4. These results 
will be discussed in the last section. 

In table 1 we show how good the results (14) are, in the particular case of the 
classical random walk. 

Table 1. The first few moments of the number of distinct sites visited in a classical 
one-dimensional random walk at the first two orders in N. 

First 

Second 
order ( 8 N / a ) ’ ”  4 N In 2 f (2  n~ )3/2 95(3)N2 ~ 4 2 ~ ~ ) 5 / 2  

N order (2n-N)-’” $ I n 2 + 6  ~ ( a * + 6 ) ( 8 N / ~ r ) ” ~  4 N In 2 &60 - 7 ~ ~ ) ( 2 n N ) ~ / ~  

100 1st 15.957 69 277.258 872 5249.869 98 108 185.2 2417 993 
2nd 15.997 58 278.349 735 5270.973 33 108 462.4 2416 668 
numerical 15.997 53 278.349 735 5271.003 71 108 463.7 2416 728 

250 1st 25.231 32 693.147 18 20 751.933 676 157.0 23 894 894 
2nd 25.256 56 694.238 04 20 785.301 676 850.1 23 889 655 
numerical 25.256 54 694.238 043 20785.320 676 851.5 23 889 751 

500 1st 35.682 48 1386.294 361 58 695.331 2704 628.0 135 169 929 
2nd 35.700 32 1387.385 224 58 742.520 2706 014.3 135 155 113 
numerical 35.700 32 1387.385 224 58 742.535 2706 015.8 135 155 258 

1000 1st 50.462 65 2772.588 722 166 015.47 10 818 512.0 764 636 587 
2nd 50.475 27 2773.679 585 166 082.21 10 821 284.6 764 594 680 
numerical 50.475 26 2773.679 585 166 082.20 10 821 286.6 764 595 033 

2000 1st 71.364 96 5545.177 444 469 562.65 43 274 047.8 4325 437 723 
2nd 71.373 88 5546.268 307 469 657.02 43 279 593.0 4325 319 191 
numerical 71.373 88 5546.268 307 469 657.04 43 279 595.0 4325 320 173 
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5. The distribution p ( j )  =j-" /J( (r )  

The jump probability distribution p ( j )  = j - " / l ( a )  is an excellent representative of 
those distributions which have no moments ( j p )  for p greater than a - 1. In fact the 
asymptotic behaviour of p ( j )  for large j will dominate the properties of the span 
distribution D(1, N) for large N. In the following we shall consider the different 
situations which happen for increasing a. 

(a) 1 < a  S 2 .  In this case neither p ( j )  nor D(1, N) have any integer moment. 
(b) 2 < a < 3. In the range 2 < a < 4  Hughes et a1 (1981) approximated the structure 

function for small values of its argument. In the following we need the better approxi- 
mation 

+ 
which is derived by applying the Poisson summation formula (Davis et a1 1975) to 

1 
j = 1 J  
C T (cos j $  - 1 + 4 ~ ~ / 2 ) ,  3 < a < 4 ,  

and by analytically continuing the result to the region 2 < a S 3 (notice that the RHS 

of (15) is analytical at a = 3) .  
The last term of (15) is dominant and we can thus write 

In this case only the mean span is finite and only the first two terms on the RHS of 
(10) contribute to its value. If we use the approximation 

we obtain 

(2  < a < 3 ) .  Notice that, if a is close to 3, the two terms on the RHS of (18) are 
comparable and diverge for a + 3 in the same way. 

(c) a = 3 .  The last consideration implies that, in this case, the last two terms of 
(15) must be treated on the same footing. The expression for the first moment is 
achieved through the following steps: 

where 

Tr2  5(a  - 2 )  1 
2 5(.) 2 " 5 ( 1 - a ) '  

y ( a )  =- -- 

(ii) each termin A N ( T r k / l )  ofthe form ( / ~ / l ) ~  exp(-y(a)Nk2/12) gives to ( ( l+ l ) ) ,  
as main contribution - ( 2 / 7 r 2 ) r ( ( P  - 1 ) / 2 ) (  N y ( c ~ ) ) ( ' - ~ ) ' ~ ;  this fact can be achieved, 
using (17), as described in § 1; 
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(iii) for a very close to 3, the generic term in the expansion (19) gives to ( ( I+ l ) )N 
the contribution: 

(iv) if we take the largest term (in N )  and put a =3,  we obtain finally 

3 1.220 95 , , . N‘12 In N. 
2N112 In N 

( ( l + l ) ) N  =[7~{(3)(3-21n 7 ~ ) ] ’ / ~  

(d) 3 < a < 4. In this case the first two moments of the jump probability distribution 
exist and so it should be for the first two moments of the span distribution. Since the 
second term on the RHS of (15) is now dominant we can write 

h .( T) = exp( -1 7~~ 5(a) {( a - 2) k2 N )  [ 1 + 2”{(1-(u) AT (y]. I (22) 

The first moment is given by 

The derivation of the higher moments is based on the approximation 

M r(p +’) M I-“ c kP exp(-hk2/12)=& l P - O + l  
/ = I  k = l  2hP+l” 

which holds for p + 2 > a > 1, while, for a s 1, the last term in (24) diverges for M + 00. 

Using ( lo) ,  (4), ( 5 ) ,  (22) and (24) we find, for p 2 3 ,  

( l + P ( a ,  p)N“3’’2) ,  

(25) 

Equations (25) and (24) imply that the second-order correction, in the asymptotic 
expression of the moment ( ( I +  l)”)N, may overcome the dominant term. This is the 
reason why we have systematically considered two orders in the expansions of the 
moments. 

On the other hand, a > p + 1 is the condition for the existence of ( j r ) ,  so that we 
may state that 

exists if and only if ( j ” )  exists’. 

(e) 4 S a < 6. The previous result, which has a simple physical interpretation, has 
been derived when 3 < a < 4 and allowing p to be continuous, but it will be true in 
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Table 2. Asymptotic behaviour of the first two moments for a random flight described by 
the distribution p (  j )  = ( j " l (  a))- '  for some a. 

2.1 
2.5 
2.9 
3.0 
3 .1  
3.5 
4.0 
4.5 
4.9 
5.1 
6.5 
a, 

6.5299 No" -0.1338 NOm9 
1.9742 No - 0.4054 No 3333 

2.6237 No 5263 - 1.8771 No 4737 

4.7731 NoS-1.726 NO4' 
2.4294 No ' -0.4144 No 2 s  

1.9673 No -0.2027 
1.7994 Nos-0.1806 N-"' 
1.7305 No - 0.6357 N-O 4s 

1.7070 Nos -0.0198 N-' 
1.6280 No ' + 0.2289 N-' 
1.5958 No '+0.3989 N-O 

1.220 95 N'" In N 

a, 

03 

a, 

03 

24.805 N 
6.425 N 
4.213 N 
3.525 N 
3.261 N 
3.175 N + 1.0908 
2.890 N + 1.0908 
2.773 N + 1.0908 

general. In the latter case the term ( 1 / 4 ! ) ( ~ k / I ) ~  l ( a  -4) /5(a)  must be added to the 
RHS of (15) to obtain a good approximation of A (rk/I). A simple generalisation of 
the result (25) implies that ( ( I +  l)')N is obtained by adding to the RHS of (25) a term 
which behaves like N ( f i - 2 ) / 2 .  Once more we arrive at the last conclusion of the previous 
case. 

(f) a 5 6 .  In this case only the moments ( I " )  for p < 5 exist and they are given by 
equations (14). 

In the previous discussion we considered only the distribution p (  j )  = 5( a)-'j-= 
but it is clear that only the asymptotic behaviour of p ( j )  is relevant to determine the 
existence of the span moments. In particular, if a value of a exists such that 

for any p < a 
for any p > a 

lim p ( j ) j p  = 
J-tm 

then ( I f i )  exists if and only if p < a. 

presented in table 2. 
The results expressed by (18) ,  (21), (23) and (25) (for CL = 2) are numerically 

6. Conclusions 

The moments of the one-dimensional random-flight distribution have been derived for 
a variety of probabilities p ( j )  of jumping to sites at distance j .  All these probabilities 
have been supposed to be symmetric and we feel that the results we have obtained in 
this paper will be drastically changed when asymmetric motions are considered. We 
have treated in 9 4 the case of localised motions, in which the probabilities of large 
jumps are exponentially decreasing. Equation (14d) shows that, while the second-order 
correction in ( ( I+l ) f i )N is of order ( N ( j 2 ) ) ( - ' + " ) ' 2  with a coefficient depending on 
distribution p ( j ) ,  the first-order term simply scales the number of steps by the factor 
( j 2 ) .  This holds for any moment. It is interesting to notice that, if we consider the 
moments of the spans ( I f i ) N ,  not only the dominant term in NPI2,  but also the next 
one in N ( f i - ' ) / 2  depend on the jump probabilities p ( j )  simply via the same scaling 
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factor on N. Equation (25) shows that this conclusion holds also for the ‘singular’ 
jump distribution of the type ( I (  a )jm ) - I  if a S 4. 

In general we may summarise in the following way. 
exists if and only if ( j ” )  exists; moreover, if ( j 2 )  and ( j 3 )  exist, (P), if finite, 

scales simply the number of steps by the factor ( j 2 )  both in the dominant term in N”” 
and in the next one in N(”-’”’. The last one is equal to If ( j ’ )  exists and 
( j 3 )  =CO, then exists for any p s 2 and scales the number of steps by the factor 
( j ’ )  only in the dominant term. If ( j )  exists and ( j ’ )  = CO, then ( I ) N  exists but there is 
no scaling; if ( j ” )  < 03 for p < a - 1 < 2, then ( I ) N  = N’/(e-’)  with an increased effective 
dimensionality.’ 

This last result agrees with the result of Hughes et a1 (1981) who, through an 
analysis of the asymptotic behaviour of the expected number of distinct sites visited 
found by Gillis and Weiss (1970), observed that the effective dimensionality of the 
walk increases in the range 1 < a < 3. As a matter of fact, we have derived our 
conclusions for the distributions p ( j )  which behave asymptotically as j - m ,  but it is 
easily seen that they may be extended to a much larger class of distributions and we 
believe they hold in general. 

An immediate consequence of the previous theorem is that the correlation effects 
for different symmetric random motions are equal up to a scaling. Next, ‘for a 
symmetrical random flight, the ratio ( I ” ) / ( / ) ”  is asymptotically independent of the 
distributions of the jumps’. The fractional standard deviation, the kurtosis and the 
skewness (Kendall and Stuart 1958), when they exist, are universal constants (i.e. they 
are independent of the type of symmetric random walk), respectively equal to 
0.2980.. . , 0.9656.. . and 4.382.. . . The analytic expressions for these quantities may 
be derived from those given in table 1. These facts, however, do not imply that the 
form of the normalised distribution D(I, N )  for the spans, as given in figure 1, is 
universal. This is true when the structure function of the jumps is analytical but, if 
we are in one of the cases treated in 0 5 ,  D(I, N )  will be the sum of some exponentials 
(of the type of equation (8)) and of some other terms which behave like I-” (for some 
a). As a consequence, while the distribution is practically unchanged in the central 
region 1 = ( N (  j2) ) ’ ’2 ,  it will be modified for very large 1 in such a way that, although 
it does not appear in a plot, the moments of the spans will become infinite as soon as 
p > a - l .  
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